

The radius of a circle is decreasing at a constant rate of 0.1 centimeter per second. In terms of the circumference C, what is the rate of change of the area of the circle, in square centimeters per second?

- (A) $-(0.2)\pi C$
- (B) -(0.1)C
- (C) $-\frac{(0.1)C}{2\pi}$
- (D) $(0.1)^2 C$
- (E) $(0.1)^2 \pi C$

2.

Let f be the function given by $f(x) = \frac{(x-1)(x^2-4)}{x^2-a}$. For what positive values of a is f continuous for all real numbers x?

- (A) None
- (B) 1 only
- (C) 2 only
- (D) 4 only
- (E) 1 and 4 only

3.

Let R be the region enclosed by the graph of $y = 1 + \ln(\cos^4 x)$, the x-axis, and the lines $x = -\frac{2}{3}$ and $x = \frac{2}{3}$. The closest integer approximation of the area of R is

- (A) = 0
- (B) 1

- (D) 3 (E) 4

The Taylor series for $\ln x$, centered at x = 1, is $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x-1)^n}{n}$. Let f be the function given by the sum of the first three nonzero terms of this series. The maximum value of $|\ln x - f(x)|$ for $0.3 \le x \le 1.7$ is

- (A) 2 0.030
- (B) 0.039
- (C) 0.145 a (D) 0.153
- (E) = 0.529

If
$$\frac{dv}{dx} = \sqrt{1 - v^2}$$
, then $\frac{d^2v}{dx^2} = \frac{1}{\sqrt{1 + v^2}}$

$$(A)$$
 $-2y$

(A)
$$-2y$$
 (B) $-y$ (C) $\frac{-y}{\sqrt{1-y^2}}$ (D) y^2

(E)
$$\frac{1}{2}$$

If
$$f(x) = g(x) + 7$$
 for $3 \le x \le 5$, then $\int_{3}^{5} [f(x) + g(x)] dx =$

(A)
$$2\int_{3}^{5} g(x) dx + 7$$

(B)
$$2\int_{3}^{5} g(x) dx + 14$$

(C)
$$2\int_{3}^{5} g(x) dx + 28$$

(D)
$$\int_{3}^{5} g(x) dx + 7$$

(E)
$$\int_{3}^{5} g(x) dx + 14$$

____7.

What are all values of x for which the series $\sum_{n=0}^{\infty} \frac{(x+2)^n}{\sqrt{n}}$ converges?

(A)
$$-3 < x < -1$$

(B)
$$-3 \le x < -1$$

(A)
$$-3 < x < -1$$
 (B) $-3 \le x < -1$ (C) $-3 \le x \le -1$ (D) $-1 \le x < 1$ (E) $-1 \le x \le 1$

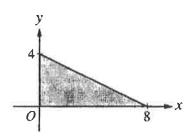
D)
$$-1 \le x < 1$$

(E)
$$-1 \le x \le$$

____ 8.

х	2	5	7	8
f(x)	10	30	40	20

The function f is continuous on the closed interval [2,8] and has values that are given in the table above. Using the subintervals [2,5], [5,7], and [7,8], what is the trapezoidal approximation of $\int_{2}^{8} f(x) dx?$



The base of a solid is a region in the first quadrant bounded by the x-axis, the y-axis, and the line x + 2y = 8, as shown in the figure above. If cross sections of the solid perpendicular to the x-axis are semicircles, what is the volume of the solid?

- (A) 12.566
- (B) 14.661
- (C) 16.755
- (D) 67.021
- (E) 134.041

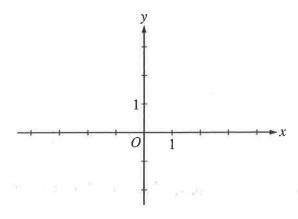
10.

Which of the following is an equation of the line tangent to the graph of $f(x) = x^4 + 2x^2$ at the point where f'(x) = 1?

- (A) y = 8x 5
- (B) y = x + 7
- (C) y = x + 0.763
- (D) y = x 0.122
- (E) v = x 2.146

Free Response

- 1. A particle moves in the xy-plane so that its position at any time t, $0 \le t \le \pi$, is given by $x(t) = \frac{t^2}{2} \ln(1+t)$ and $y(t) = 3 \sin t$.
 - (a) Sketch the path of the particle in the xy-plane below. Indicate the direction of motion along the path.



- (b) At what time t, $0 \le t \le \pi$, does x(t) attain its minimum value? What is the position (x(t), y(t)) of the particle at this time?
- (c) At what time t, $0 < t < \pi$, is the particle on the y-axis? Find the speed and the acceleration vector of the particle at this time.

- 4. The function f has derivatives of all orders for all real numbers x. Assume f(2) = -3, f'(2) = 5, f''(2) = 3, and f'''(2) = -8.
 - (a) Write the third-degree Taylor polynomial for f about x = 2 and use it to approximate f(1.5).
 - (b) The fourth derivative of f satisfies the inequality $|f^{(4)}(x)| \le 3$ for all x in the closed interval [1.5, 2]. Use the Lagrange error bound on the approximation to f(1.5) found in part (a) to explain why $f(1.5) \ne -5$.
 - (c) Write the fourth-degree Taylor polynomial, P(x), for $g(x) = f(x^2 + 2)$ about x = 0. Use P to explain why g must have a relative minimum at x = 0.